Théorème de Ptolémée

 Pour qu'un quadrilatère soit inscriptible il faut et il suffit que xy = ac + bd 

Ainsi que la deuxième formule de Ptolémée :

 x/y = (ad + bc)/(ab + cd) 

Démontrons ces formules (théorème direct)
Rapelons les formules de l'aire d'un triangle S = 1/2 b.c.sinA et S = a.b.c/(4R)
L'aire d'un quadrilatère est S = 1/2 x.y.sinθ (immédiat à partir de l'aire des 4 triangles intérieurs).

Traçons CE // BD et donc les triangles BCD et BED congruents donnent BE = c et DE = b
Les angles correspondants AIB et ACE sont égaux, les angles inscrits ABE et ACE sont égaux donc ABE = θ
L'aire de ABCD = 1/2 x.y.sinθ est alors égale à la somme des aires de ABE et ADE soit 1/2 a.c.sinθ + 1/2 b.d.sin(π - θ) et donc

 xy = ac + bd 

Aire(ABC) = a.b.x/(4R), Aire(ACD) = c.d.x/(4R), Aire(ABD) = a.d.y/(4R) et Aire(BCD) = b.c.y/(4R) soit (ab + cd)x = (ad + bc)y et la deuxième formule de Ptolémée.

 

Accueil Arithmétiques Géométrique Divers Thèmes Scripts Jeux Mail English version Précédent Suivant